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We show that quantum Monte Carlo calculations of the dynamic structure factor of the isotropic-spin-1/2
antiferromagnetic chain at intermediate temperatures corroborate a picture of diffusive spin dynamics at finite
frequencies in the low-energy long-wavelength limit and are in good agreement with recent predictions for this
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The one-dimensional �1D� Heisenberg XXZ antiferromag-
net
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where J�0 is the exchange coupling, Sl
z,� are spin-1/2 op-

erators on site l, and � is the exchange anisotropy which is
one of the best studied strongly correlated many-body sys-
tem. Its magnetic transport properties however, remain an
open issue.1 Spin transport in the Heisenberg chain is di-
rectly related to carrier transport in 1D correlated spinless
fermion systems, via the Jordan-Wigner transformation, and
therefore is of great interest in a broader context. Linear-
response theory2 shows the zero momentum, frequency-
dependent spin conductivity
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where j= jq=0 is the z component of the spin current with
jq= �i�J /2��lexp�−iql��Sl

−Sl+1
+ −Sl

+Sl+1
− �, and m and n are the

eigenstates with energies Em,n.
The Drude weight has been under intense scrutiny for

more than two decades. However, no generally accepted pic-
ture has emerged. A nonzero Drude weight would imply dis-
sipationless transport in a correlated system,3 despite the fact
that �j ,H��0 for the XXZ model. Here we give a brief sum-
mary regarding the status of this issue and refer to Ref. 1,
and references therein for a more extensive summary. At T
=0 and in the massless regime ���
1 of the XXZ chain, the
zero-temperature Drude weight is known to be finite.4 At T
�0, Bethe-Ansatz �BA� calculations arrive at contradictory
results regarding the temperature dependence of D�T�.5–7

The same holds for the question whether D�T�0� is finite or
not at the SU�2� symmetric point �=1.5,6 Recent numerical
studies using quantum Monte Carlo �QMC�,8,9 exact diago-
nalization �ED� at zero,2,10–12 as well as finite magnetic
fields,13 and master equations14,15 are consistent with D�0
for ����1 and T�0, supporting a ballistic contribution to
the conductivity at finite temperatures. Recent time-
dependent density-matrix renormalization-group studies
have given evidence for ballistic spin dynamics for ����1 in
the out-of-equilibrium case.16

The regular finite-frequency contribution �reg� ��� has been
considered by ED studies,17,18 which however leave many
open issues. Very recently, spin diffusion has been conjec-
tured to govern the low-frequency spectrum of the regular
conductivity,20 based on real-time transfer-matrix renormal-
ization group �tTMRG� and a perturbative analysis using
bosonization. The latter provides for an approximate expres-
sion for the Fourier transform of the retarded spin suscepti-
bility ret�q , t�= i��t�	�Sq

z�t� ,S−q
z �
, which reads

ret�q,�� = −
Kvq2

2�

1

�2 − v2q2 − �ret�q,��
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with

�ret�q,�� � − 2i�B� − b�2 + cv2q2, �6�

where at �=1, K=1+g /2+g2 /4+g3 /8, v=� /2 �see, e.g.,
Ref. 19�, 2�B=�g2T, b=g2 /4−g3�3−8�2 /3� /32+�3T2 /�,
and c=g2 /4−3g3 /32−�3T2 /� have been obtained by pertur-
bative expansions �PEs� at T�J �Ref. 20� in powers of the
running coupling constant 1 /g+ln�g� /2=ln��� /2 exp�G
+1 /4� /T� and G�0.577216¯ is Euler’s constant.21

Some remarks are in order. First, for ���, Eq. �5� dis-
plays a diffusion pole with a diffusion constant �= �1
+c�v2 / ��g2T�. That is, within this approximation the spin
dynamics of the Heisenberg chain would allow for a plain
hydrodynamic limit. Second, Eqs. �5� and �6� do not incor-
porate the finite width of the spectral function ��q ,��
=Im�ret�q ,��� /� at T=0, which is dominantly set by the
two-spinon continuum. However, at q /��1 the latter width
is of order �Jq3 /16, which for those wave vectors and tem-
peratures which we will be interested in is negligible against
�B. Third, for any finite momentum q�0, the isothermal
susceptibility q=−�

� d���q ,�� /� obtained from Eq. �5� is
identical to the isolated susceptibility ret�q ,0�
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=−�
� d���q ,�� / ��− i0+� since ��q�0,�→0���. There-

fore q=K / �2�v�1+c��. Furthermore, the isothermal suscep-
tibility of the Heisenberg model is a continuous function of
q. Its limiting value limq→0 q=0 at zero momentum is
known from thermodynamic BA �TBA�.19,21 Therefore

K/�2��
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= 0 �
1

�2�1 −
g

2
+

3g3

32
+
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�
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should be satisfied, where PE is a known PE of the TBA
result19,21 and which is consistent with the parameters listed
following Eq. �6�.

The spectral function ��q ,�� is related to �reg� ��� by
means of the lattice version of the continuity equation �tSq

z

= �1−exp�−iq��jq through

�reg� ��� = lim
q→0

�

q2��q,�� . �8�

Therefore, the spectrum of the regular part of the optical
conductivity can be deduced from Eqs. �5� and �6�.

The main goal of this work is to analyze, to which extent
Eqs. �5� and �6� are consistent with QMC calculations. The
significance of such comparison is with the regular part of
the spin conductivity. It will not clarify the size of the Drude
weight, as any discrepancy arising may be due to partial
spectral weight transfer into a Drude weight. Furthermore,
we focus on the isotropic point �=1, which may be different
from the anisotropic case. To begin, we note, that Eqs. �5�
and �6� approximate the on-shell part of the spectrum for
���vq��T. Yet, similar to the comparison with tTMRG in
Eqs. �C2� and �C3� of Ref. 20, we will assume them to be
valid for all �. Furthermore, q is known to monotonously
increase for the Heisenberg model as q→� /2. However,
q=K / �2�v�1+c�� from bosonization is momentum inde-
pendent. Therefore, a momentum dependence K→Kq and
v→vq—albeit weak at q�1—is to be allowed for, when
matching up Eqs. �5� and �6� with QMC.

We perform the comparison to QMC by transforming
ret�q ,�� onto the imaginary-time axis

�q,�� = 2�
n=0

�

cos��n���q,�n� − �q,0� ,

�q,�n� =
Kqvqq2/�2��

�1 + b��n
2 + �1 + c�vq

2q2 + 2�q��n�
. �9�

The main point is that a corresponding QMC�q ,�� can be
obtained directly from QMC, following preceding work em-
ploying the stochastic series-expansion method.22 This in-
volves only the statistical error, which is well controlled.
Uncontrolled sources of error, due to, e.g., transformations to
real or Matsubara frequencies, do not occur. �q ,�� is
gauged against QMC�q ,�� by fitting Kq, vq, and �q at small
momentum while retaining b and c as given by bosonization.
This is justified because the latter two constants do not en-
large the space of fitting parameter, as any modification of
them can be absorbed into a renormalization of Kq, vq, and
�q. Regarding the temperature range, we confine ourselves to
T /J�0.25. This is motivated by the PE to O�g3 ,T2� for ther-

modynamic properties to agree rather well with QMC results
up to T /J�0.1 �Ref. 23� while for T�0.25 the PE starts to
fail significantly.

Figure 1 shows the result of the comparison of QMC with
Eq. �9� for the smallest nonzero wave vector q=� /64 of a
128-site system for two temperatures T /J=0.1 and 0.25 al-
lowing for three different choices of �q, namely, �i� �q,QMC as
optimized by fitting, �ii� �B taken from the bosonization, and
finally �iii� �q=0 forced to be zero.24 The upper panel �b� of
this figure clearly demonstrates that QMC is inconsistent
with �q=0 and that increasing �q above zero improves the
quality of the fit. In particular, the best fit, i.e., for �q,QMC, is
identical within the standard deviation 2� �error bar� to
QMC for almost all �� �0,�� at both temperatures. Yet, we
find �q,QMC��B and moreover there are systematic oscilla-
tory deviations. While the latter seem a subdominant effect,
which could be due to the on-shell approximation in Eqs. �5�
and �6�, these deviations may also indicate relevant correc-
tions to diffusion and should be investigated in future stud-
ies. We emphasize the vertical scale on panel �b� of Fig. 1
which demonstrates that high-precision QMC is mandatory
for the present analysis. Figure 1 is a central result of this
work. It shows that QMC is consistent with a dynamic struc-
ture factor of the isotropic antiferromagnetic Heisenberg
chain which is approximately diffusive at intermediate tem-
peratures in the long-wavelength limit with a diffusion kernel
�1+c�v2 / �2�q,QMC�. Any momentum dependence of �q,QMC,
to be discussed later, implies corrections to this diffusion.
Next, and to further support our approach, we will also dis-
cuss the Luttinger parameters we find.

In Table I we compare the parameters obtained from the
fit to QMC with results from TBA, PE, and tTMRG. This
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FIG. 1. Imaginary-time susceptibility QMC�q ,�� at q=� /64 on
128 sites, for two temperatures T, fitted to �q ,�� from Eq. �9�
�lines� in three ways, namely, �q,QMC optimized �solid�, �B taken
from Ref. 20 �dashed�, and � forced to zero �dotted�. The index “i”
on the y axis refers to �q ,�� from Eq. �9� for the lines in panels �a�
and �b� as well as to QMC for the symbols in panel �a�. Panel �a�
Global behavior of QMC�q ,�� /QMC�q ,0� for T /J=0.1 �QMC,
squares� and 0.25 �QMC, circles�. In this panel the three fits �lines�
are indistinguishable on the scale of the plot. Panel �b� error 2� of
QMC�q ,�� for each � evaluated �error bars� and difference �q ,��
−QMC�q ,�� between QMC and the three fits �lines�. 2� for the
QMC data is O�10−7�. Plots corresponding to T /J=0.1 have been
shifted by 2	10−6.
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table shows that q,QMC=Kq / �2�vq�1+c�� at q=� /64 is in
excellent agreement with the isothermal susceptibility at q
=0 from the TBA for both temperatures which we have stud-
ied. This result should not be confused with the well-known
agreement between static QMC and TBA for the isothermal
susceptibility23 but rather it is a satisfying consistency check
for our approach. In fact, fitting the imaginary-time trans-
form of an approximate �q ,��, i.e., Eq. �5�, to QMC could
require values for Kq, vq, and �q which deviate from exactly
known values for these quantities on a scale which is unre-
lated to the error 2� of the QMC. As will be shown later the
variation in Kq and vq with momentum is very weak as q
�1, i.e., we expect no relevant change for q,QMC as q→0.
Yet we are tempted to point out that q=�/64,QMC in Table I is
barely larger than 0, which is consistent with the momen-
tum dependence for the exact q. The fact that q,QMC /PE
�1 and is increasing as T increases, evidences that PE on
the left-hand side �lhs� of Eq. �7� increasingly underestimates
the TBA result as T increases beyond T /J�0.1. In Fig. 1 we
have shown that �q,QMC��B. Yet, Table I demonstrates that
�q,QMC and �B are comparable to within factors of order 2.
Most important, the relaxation rate �q,QMC we find is much
larger than the width of the two-spinon continuum, yet, very
small compared to temperature �q,QMC�T. We note that fits
to tTMRG �Ref. 20� at T /J=0.2 lead to �tTMRG /�B�0.64.

Next we discuss the momentum dependence. Figure 2 dis-
plays all three fit parameters Kq, vq, and �q,QMC versus the
first six nonzero momenta and the two temperatures T /J
=0.1 and 0.25 which have also been considered in Fig. 2. vq
and �q,QMC have been normalized to their values given by

bosonization, i.e., � /2 and �B. Obviously all momentum
variations are very smooth and rather weak. As can be seen
from this figure, most of the renormalization of the ratio
Kq /vq from its bare value of 2 /� stems from Kq�1. The
spinon velocity vq deviates slightly from � /2, however, only
to within O�1%�. As discussed in the previous paragraph,
this is necessary to obtain an optimum fit of the QMC to the
approximation Eq. �9� and does not imply that QMC is at
variance with the bare spinon velocity. Kq displays a very
weak upward curvature while vq shows a small downward
curvature. The latter can be understood in terms of O�q3�
corrections to the linear on-shell dispersion ��q� which are
not contained in bosonization. The combined momentum de-
pendence of Kq /vq leads to the expected increase in the static
susceptibility with q. Finally, �q,QMC /�B also displays a weak
momentum dependence which is larger for T /J=0.1. The
latter may signal the onset of finite-size effects. In fact,
�q,QMC�0 implies a length scale l of order O�v / �2�q,QMC��
for the regular current relaxation. l is less than the system
size for both temperatures studied. Yet, 128 / l�9 for T /J
=0.25 and 128 / l�3 for T /J=0.1. With momentum depen-
dence, � as extracted from a real-space quantity20 will differ
from that obtained by QMC at fixed small momenta.

While the preceding has been exact up to the statistical
error of the QMC, we would like to conclude this work by
speculating on the line shape of the regular part of the con-
ductivity on the imaginary frequency axis at �n=2�nT. In
principle this requires a careful analysis of the error intro-
duced by the Fourier transform QMC�q ,�n�
=0

1/Texp�i�n��QMC�q ,��d�. This error will increase as �n
increases. Here we refrain from analyzing this since our goal
is merely to demonstrate to which extend our QMC data
discriminates between a conductivity with �=0 and one with
�=�q,QMC�0. To this end Fig. 3 displays �n�QMC�q ,�n�
=�n

2QMC�q ,�n� /q2 as compared to �n��q ,�n�
=�n

2�q ,�n� /q2 with �q ,�n� taken from Eq. �9� and with
�=0 or �=�q,QMC. Without any further ado, this figure
clearly demonstrates that �=0 in ��q ,�n� from Eqs. �8� and
�9� is inconsistent with our QMC which however agrees very
well with ��q ,�n� for �=�q,QMC.26 This implies that QMC is
consistent with a Drude type of behavior of the frequency
dependence of the regular conductivity with a relaxation rate
2�q,QMC. While future studies may focus on finite-size scal-
ing to perform the limit of q→0, as required in Eq. �8�, this
is beyond the scope of the present analysis.

In conclusion QMC is consistent with spin dynamics of
the isotropic 1D Heisenberg antiferromagnet which is prima-
rily diffusive in the long-wavelength limit and at intermedi-
ate temperatures, implying a regular part of the spin conduc-

TABLE I. Columns 2 and 3: comparison of q,QMC=Kq / �2�vq�1+c�� from QMC at q=� /64 with 0

from TBA �Ref. 25� and PE from the lhs of Eq. �7�. Columns 4–6 display � from bosonization, tTMRG, and
QMC.

T /J q,QMC /0 q,QMC /PE �B �Ref. 20� �tTMRG �Ref. 20� �q,QMC

0.1 1.0005 1.0032 0.0096 0.0191

0.25 1.0005 1.0248 0.0440 0.0511

0.2 0.0297 0.0190

π/64 2π/64 3π/64 4π/64 5π/64 6π/64
q

0.8

0.9

1

1.1

1.2

Kq

2vq/π
γq,QMC/γB

Kq

2vq/π
γq,QMC/2γB

closed: T/J=0.25
open: T/J=0.1

FIG. 2. Momentum dependence of the renormalized Luttinger
parameter Kq, spinon velocity vq, and scattering rate �q,QMC /�B for
the first nonzero six momenta on a 128 site system for two tem-
peratures T /J=0.1 �white symbols� and 0.25 �black symbols�. Note
that �q,QMC /�B for T=0.1 has been scaled by 2 to fit into the plot.
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tivity with a finite relaxation rate ��T. This corroborates
recent findings by bosonization and tTMRG. Our analysis
does not allow conclusions on the pending open questions on
the Drude weight at �=1, yet based on the numerical evi-
dence for D�T�0��0, our findings may open up the intrigu-
ing possibility of a finite temperature dynamical spin con-
ductivity of the isotropic Heisenberg model which comprises
of both, a finite Drude weight and a regular part with a very
large mean-free path at low temperatures. Future analysis
should focus on the relevance of corrections beyond the on-
shell approximation, on the case �
1, and on higher tem-
peratures T�J.

We are indebted to F. Heidrich-Meisner and R. G. Pereira
for valuable comments. Work supported in part by the
Deutsche Forschungsgemeinschaft through Grant No.
BR 1084/6-1, FOR912 and by the National Science Founda-
tion under Grant No. PHY05-51164.

*s-n.grossjohann@tu-bs.de
1 F. Heidrich-Meisner, A. Honecker, and W. Brenig, Eur. Phys. J.

Spec. Top. 151, 135 �2007�.
2 F. Heidrich-Meisner, A. Honecker, D. C. Cabra, and W. Brenig,

Phys. Rev. B 68, 134436 �2003�.
3 X. Zotos, F. Naef, and P. Prelovšek, Phys. Rev. B 55, 11029

�1997�.
4 B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243 �1990�.
5 X. Zotos, Phys. Rev. Lett. 82, 1764 �1999�.
6 J. Benz, T. Fukui, A. Klümper, and C. Scheeren, J. Phys. Soc.

Jpn. Suppl. 74, 181 �2005�.
7 Z. Qiu-Lan and G. Shi-Jian, Chin. Phys. Lett. 24, 1354 �2007�.
8 J. V. Alvarez and C. Gros, Phys. Rev. B 66, 094403 �2002�.
9 D. Heidarian and S. Sorella, Phys. Rev. B 75, 241104�R� �2007�.

10 B. N. Narozhny, A. J. Millis, and N. Andrei, Phys. Rev. B 58,
R2921 �1998�.

11 P. Jung and A. Rosch, Phys. Rev. B 76, 245108 �2007�.
12 S. Mukerjee and B. S. Shastry, Phys. Rev. B 77, 245131 �2008�.
13 F. Heidrich-Meisner, A. Honecker, and W. Brenig, Phys. Rev. B

71, 184415 �2005�.
14 T. Prosen and M. Znidaric, J. Stat. Mech.: Theory Exp. �2009�

P02035.
15 M. Michel, O. Hess, H. Wichterich, and J. Gemmer, Phys. Rev.

B 77, 104303 �2008�.
16 S. Langer, F. Heidrich-Meisner, J. Gemmer, I. P. McCulloch, and

U. Schollwöck, Phys. Rev. B 79, 214409 �2009�.
17 X. Zotos and P. Prelovšek, Phys. Rev. B 53, 983 �1996�.
18 F. Naef and X. Zotos, J. Phys.: Condens. Matter 10, L183

�1998�.
19 A. Klümper and D. C. Johnston, Phys. Rev. Lett. 84, 4701

�2000�.
20 J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. Lett. 103,

216602 �2009�, arXiv:0906.1978v1.
21 S. Lukyanov, Nucl. Phys. B 522, 533 �1998�.
22 S. Grossjohann and W. Brenig, Phys. Rev. B 79, 094409 �2009�.
23 D. C. Johnston, R. K. Kremer, M. Troyer, X. Wang, A. Klümper,

S. L. Bud’ko, A. F. Panchula, and P. C. Canfield, Phys. Rev. B
61, 9558 �2000�.

24 Fits performed using Mathematica®.
25 A. Klümper �private communication�.
26 For a different QMC approach, not suited to clarify the role of �

in ��q ,�n� see Ref. 20.

0 0.5 1 1.5 2

0.24

0.26

0.28

γ = 0
γ = γQMC
QMC

0 1 2 3 4 5ωn

0.25

0.26

0.27

0.28

ω
nσ(

q,
ω

n) T/J=0.1

T/J=0.25
q = π/64

2π/64
3π/64

a)

b)

FIG. 3. �n�QMC�q ,�n� from QMC for the first three nonzero
Matsubara frequencies �n=2�nT and wave vectors q=n� /64, with
n=1, 2, and 3 as compared to �n

2�q ,�n� /q2 using Eq. �9� with �
=0 �dashed� and �=�q,QMC �solid� on a 128 site system for �a�
T /J=0.1 and �b� 0.25. �See text regarding statistical error.�
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